Gaussian Process Regression with Heteroscedastic or Non-Gaussian Residuals
نویسندگان
چکیده
Abstract Gaussian Process (GP) regression models typically assume that residuals are Gaussian and have the same variance for all observations. However, applications with input-dependent noise (heteroscedastic residuals) frequently arise in practice, as do applications in which the residuals do not have a Gaussian distribution. In this paper, we propose a GP Regression model with a latent variable that serves as an additional unobserved covariate for the regression. This model (which we call GPLC) allows for heteroscedasticity since it allows the function to have a changing partial derivative with respect to this unobserved covariate. With a suitable covariance function, our GPLC model can handle (a) Gaussian residuals with input-dependent variance, or (b) nonGaussian residuals with input-dependent variance, or (c) Gaussian residuals with constant variance. We compare our model, using synthetic datasets, with a model proposed by Goldberg, Williams and Bishop (1998), which we refer to as GPLV, which only deals with case (a), as well as a standard GP model which can handle only case (c). Markov Chain Monte Carlo methods are developed for both modelsl. Experiments show that when the data is heteroscedastic, both GPLC and GPLV give better results (smaller mean squared error and negative log-probability density) than standard GP regression. In addition, when the residual are Gaussian, our GPLC model is generally nearly as good as GPLV, while when the residuals are non-Gaussian, our GPLC model is better than GPLV.
منابع مشابه
Estimating the error distribution in nonparametric multiple regression with applications to model testing
In this paper we consider the estimation of the error distribution in a heteroscedastic nonparametric regression model with multivariate covariates. As estimator we consider the empirical distribution function of residuals, which are obtained from multivariate local polynomial fits of the regression and variance functions, respectively. Weak convergence of the empirical residual process to a Ga...
متن کاملAssessment of parametric uncertainty for groundwater reactive transport modeling
The validity of using Gaussian assumptions for model residuals in uncertainty quantification of a groundwater reactive transport model was evaluated in this study. Least squares regression methods explicitly assume Gaussian residuals, and the assumption leads to Gaussian likelihood functions, model parameters, and model predictions. While the Bayesian methods do not explicitly require the Gauss...
متن کاملMaximum Likelihood Cost Functions for Neural Network Models of Air Quality Data
The prediction of episodes of poor air quality using artificial neural networks is investigated, concentrating on selection of the most appropriate cost function used in training. Different cost functions correspond to different distributional assumptions regarding the data, the appropriate choice depends on whether a forecast of absolute pollutant concentration or prediction of exceedence even...
متن کاملVariational Heteroscedastic Gaussian Process Regression
Standard Gaussian processes (GPs) model observations’ noise as constant throughout input space. This is often a too restrictive assumption, but one that is needed for GP inference to be tractable. In this work we present a non-standard variational approximation that allows accurate inference in heteroscedastic GPs (i.e., under inputdependent noise conditions). Computational cost is roughly twic...
متن کاملAsymptotic Inference in Some Heteroscedastic Regression Models with Long Memory Design and Errors
This paper discusses asymptotic distributions of various estimators of the underlying parameters in some regression models with long memory (LM) Gaussian design and nonparametric heteroscedastic LM moving average errors. In the simple linear regression model, the first-order asymptotic distribution of the least square estimator of the slope parameter is observed to be degenerate. However, in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1212.6246 شماره
صفحات -
تاریخ انتشار 2012